
Tetrahedron Letters 48 (2007) 979–983
Bacillus subtilis epoxide hydrolase-catalyzed preparation of
enantiopure 2-methylpropane-1,2,3-triol monobenzyl ether and

its application to expeditious synthesis of (R)-bicalutamide

Aya Fujino,a Masayoshi Asano,a Hitomi Yamaguchi,b Naoki Shirasaka,b Akiko Sakoda,b

Masaya Ikunaka,b Rika Obata,a Shigeru Nishiyamaa and Takeshi Sugaia,*

aDepartment of Chemistry, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
bResearch and Development Center, Nagase & Co., 2-2-3, Murotani, Nishi-ku, Kobe 651-2241, Japan

Received 1 November 2006; revised 4 December 2006; accepted 5 December 2006
Available online 22 December 2006
Abstract—Expeditious synthesis of (R)-bicalutamide (1), a synthetic antiandrogen, from enantiopure 2-methylpropane-1,2,3-triol
monobenzyl ether (4) was achieved. An engineered Bacillus subtilis epoxide hydrolase worked enantioselectively on the racemic
epoxide (7) to provide the above starting material in highly enantiomerically enriched state.
� 2006 Elsevier Ltd. All rights reserved.
Being a potent antiandrogen of a non-steroidal struc-
ture, bicalutamide [Casodex�, (1)]1 has been used in
drug therapy to treat prostate cancer (Fig. 1). While
the clinically prescribed entity is a racemic mixture,1,2

its (R)-isomer was deduced to be an active principle
from the following experimental evidences:3 the (R)-iso-
mer of 1 exhibited higher affinity to androgen receptors4

and was less susceptible to metabolic degradation com-
pared to the antipodal (S)-isomer.5
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Figure 1.
So far, (R)-1 and analogs thereof were assembled using
two kinds of enantiomerically enriched 2-methyl-2-
hydroxypropanoic acid derivatives: (1) (R)-3-bromo-2-
hydroxy-2-methylpropanoic acid (2) prepared via
asymmetric bromolactonization effected under the influ-
ence of DD-proline as chiral auxiliary;6–9 (2) (S)-citramalic
acid (3) obtained by resolution.10 Once its latent symme-
try was recognized with 1, terminally differentiated
2-methylpropane-1,2,3-triol, (R)-4, might well serve the
synthesis of (R)-1 providing that thiophenol (5) and ani-
line (6) could be installed at the proper ends of (R)-4
(Fig. 1).

Preparation of an enantiomerically enriched form of 4
has been known by epoxide hydrolase (EH)-catalyzed
enantioselective hydrolysis11 of easily accessible racemic
epoxide 7.12 While diverse catalytic activities and stereo-
chemical courses have been reported,13 we chose an
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Scheme 1. Reagents and conditions: (a) B. subtilis epoxide hydrolase,
30 �C, 7 days, conv. 52%; (R)-4: 46%, 79.0% ee; (R)-7: 37%, 100% ee.
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Scheme 2. Reagents and conditions: (a) B. subtilis epoxide hydrolase,
30 �C, 7 days, conv. 53%; (b) dil H2SO4, room temperature; (c)
recrystallization from Et2O at �30 �C, (R)-4 as crystalline solid: 43%,
100% ee; as mother liquor, 40%, 68.1% ee.
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Scheme 3. Reagents and conditions: (a) TsCl, pyridine; (b) K2CO3,
MeOH, 94%; (c) B. subtilis epoxide hydrolase, 30 �C, 2 days, conv.
82%; (R)-4: 82%, 100% ee; (R)-7: 18%, 68.1% ee.

Figure 2. Simulation for the progress of B. subtilis epoxide hydrolase-
catalyzed hydrolysis of (S)-7 (E = 73, ee0 = 68.1%).
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engineered enzyme, with high catalytic activity and
availability in quantity, from an origin of Bacillus sub-
tilis (BSEH).14 When harvested cells of the engineered
B. subtilis were incubated with (±)-7 at 30 �C for a week,
(S)-selective hydrolysis proceeded in 52% conversion to
give (R)-4 of 79.0% ee and unconsumed (R)-7 of 100% ee
in 46% and 37% isolated yield, respectively (Scheme 1).15

For this BSEH-mediated kinetic resolution of (±)-7, the
E value16 was estimated to be as high as 73.

Now that BSEH had proven to be efficacious in resolv-
ing (±)-7 kinetically to (R)-epoxide (7) and its antipodal
diol (4) via (S)-selective hydrolysis on a preparative
scale, attention was turned to defining the conditions
to obtain only the hydrolysate (R)-4 from (±)-7 in a ste-
reoconvergent manner17 (Scheme 2). The above-men-
tioned cells of B. subtilis were incubated with (±)-7 in
53% conversion. The resulting mixture of (R)-4 and
(R)-7 as a whole was treated with dilute H2SO4,18 where-
by (R)-4 underwent acid-catalyzed hydrolysis with
stereochemical inversion at its quaternary stereogenic
center19,20 to afford (R)-4 of 82.3% ee in 83% overall
yield (Scheme 2). This was further crystallized from
Et2O at �30 �C, and enantiomerically pure (R)-4 was
obtained as a solid in 43% yield (52% recovery).21

The mother liquor (68.1% ee) in the previous crystalliza-
tion procedure still contained the (R)-enantiomer (ca.
84% of the mixture). It was then attempted to reuse
the (R)-4, recovered with a moderate enantiomeric pur-
ity, by converting it back to (S)-epoxide (7) and subject-
ing the latter to the BSEH-catalyzed kinetic resolution
again (Scheme 3). Then, diol (R)-4 was derived to enan-
tiomerically enriched (S)-7 (68.1% ee) in two conven-
tional steps (94%).

Under the kinetically resolving conditions, pursuing
high ee of the digested products (more reactive enantio-
mers) is always somewhat more difficult than of the
unaffected substrates (less reactive enantiomers), even
with high enantioselectivity. As the desired (R)-4 is
derived from the more reactive enantiomer (S)-7,
termination of the reaction at the proper conversion is
very important. We then simulated the relationship
between conversion and ees of the digested product 4
and unaffected recovery 7 under a certain mathematical
model,16 and Figure 2 predicted ca. 80% conversion as
the critical point.

The progress of the actual enzymatic reaction was moni-
tored occasionally by HPLC. After 2 days, we stopped
the reaction at 82% conversion, and enantiomerically
pure (R)-4 in 82% and (R)-7 of 68.1% ee in 18% were ob-
tained (Scheme 3). In this event, two interesting observa-
tions were noted. When starting with (S)-7 of 68.1% ee,
the BSEH-catalyzed hydrolysis proceeded with slightly
higher enantioselectivity than the value of 73 that had
been estimated for the hydrolysis of (±)-7. In addition,
the reaction proceeded substantially faster with (S)-
enriched 7. This acceleration phenomenon should be
ascribed to less amounts of (R)-7 which, possessing a
Km value similar to that of (S)-7, must have worked as
a competitive inhibitor against the BSEH.

The combined total yield of enantiomerically pure (R)-4
as described in Schemes 2 and 3 was 74% based on the
original starting material, (±)-7. With enantiomerically
pure (R)-4 being secured in quantity, effort was directed
toward its conversion to (R)-bicalutamide (1) (Scheme
4). Selective oxidation of the diol was performed with
TEMPO-mediated oxidation to give 8 (97%),22 by
avoiding any reagents possibly causing the undesired
glycol cleavage through a cyclic intermediate by metallic
oxidants.23 For the next amide bond formation between
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Scheme 4. Reagents and conditions: (a) TEMPO, NaClO, NaClO2,
MeCN-buffer, 35 �C, 24 h, 97%; (b) SOCl2, THF, 6, DMAP, room
temperature, 5 days; (c) Ac2O, pyridine, 83% from 8; (d) DDQ, hm
(352 nm, 15 W), MeCN, 85%; (e) K2CO3, MeOH, 85%; (f) lit.28
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highly sterically hindered 8 and amine 6 with very low
nucleophilicity, activation of a-hydroxy acid 8 was only
realized by way of acid chloride10 in THF. The smooth
reaction required excessive amount of amine 6, and an
assistance of DMAP (3 equiv). When this reaction was
attempted in N,N-dimethylacetamide according to the
literature procedures, formation of an a-halo acid by-
product was detected. As far as this particular amide
bond formation was concerned, the conventional
reagents for peptide synthesis, such as EDCI-HOBT,
did not work. Product 9a was obtained as an inseparable
mixture with 6, then the crude product was directly acet-
ylated so that acetate 9b (83% from 8) was separated
from 10 by SiO2 chromatography.24 For the deprotec-
tion of the O-benzyl group in 9b, DDQ oxidation under
UV irradiation conditions25 was effective, and the de-
sired alcohol 11a was obtained in 85% yield.26 By com-
parison, its exposure to catalytic hydrogenolysis caused
side reactions in which the aromatic cyano group was
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Scheme 5. Reagents and conditions: (a) Compound 5, NaH, THF,
room temperature, 90 min, 93%; (b) H2O2, AcOH, 60 �C, 24 h; (c) H2,
Pd–C, EtOH, room temperature, 48 h, 91% from 12; (d) TEMPO,
NaClO, NaClO2, MeCN-buffer, 35 �C, 24 h, 93%; (e) SOCl2, THF, 6,
room temperature, 5 days, 91%.
reduced to a benzylamine function. Finally, the acetyl
protective group was removed to give diol 11b (85%,
100% ee),27 which is a known precursor for (R)-128

(Scheme 4).

In conclusion, large-scale preparation of diol (R)-4 as
well as epoxide (R)-7 was achieved using an engineered
BSEH-catalyzed hydrolation of racemic epoxide, and
the product was applied for an expeditious route to
(R)-bicalutamide (21% overall yield).29 Last but not
the least, a chemoenzymatic method to convert (±)-7
as a whole to diol (R)-4 was also established, which
should serve the synthesis of biologically active com-
pounds and other industrial materials, since (R)-4 can
be regarded as a desymmetrized form of 2-methylpro-
pane-1,2,3-triol with its molecular termini being differen-
tiated as a robust benzyl ether.
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115.4, 104.7, 76.3, 69.6, 23.4, 20.8. HRMS (EI, 70 eV):
calcd for C14H11F3N2O3: (M+1+): 312.0019; found: m/z
312.0701.

27. Compound 11b: Mp 131.2–131.5 �C. ½a�21
D �42.2 (c 0.945,

MeOH) [lit.28 ½a�18
D �43.6 (c 1.0, MeOH)], IR (film): 3342,

2925, 2854, 2231, 1697, 1612, 1581, 1522, 1429, 1327, 1178,
1134, 1051, 845 cm�1. 1H NMR (CDCl3): d 9.10 (1H, s),
8.09 (1H, d, J = 2.1 Hz), 7.92 (1H, dd, J = 8.4, 2.1 Hz),
7.78 (1H, d, J = 8.4 Hz), 4.14 (1H, d, J = 11.0 Hz), 3.57
(1H, d, J = 11.0 Hz), 3.40 (1H, s), 2.14 (1H, s), 1.45
(3H, s). 13C NMR (CDCl3): d 174.1, 141.7, 136.1, 134.3
(q, 2JFC = 34.0 Hz), 122.3 (q, 1JFC = 274.5 Hz), 122.0,
117.5 (q, 3JFC = 5.0 Hz), 115.7, 104.8, 71.7, 67.8, 22.9.
HPLC: 100% ee [Chiralcel OD-H, 0.46 cm · 25 cm; hex-
ane–i-PrOH (15:1), 0.5 mL/min], tR(min) = 53.9 [(S)-,
100%]. No peak ascribable to (S)-isomer [tR(min) = 57.2]
was detected.

28. Soros, B.; Tuba, Z.; Galik, G.; Bor, A.; Demeter, A.;
Trischler, F.; Harvath, J.; Brlik, J. WO 2001000608, 2002;
Chem. Abstr. 2002, 134, 86040.

29. Alternatively, (R)-bicalutamide (1) was also synthesized
from (R)-7 as in Scheme 5.
Compound 12: ½a�22

D +5.7 (c 1.07, EtOH). IR (film): 3448,
3089, 2862, 1589, 1491, 1369, 1227, 1092, 827, 739,
698 cm�1. 1H NMR (CDCl3): d 7.38 (2H, ddd, J = 7.2,
5.1, 2.0 Hz), 7.35–7.25 (5H, m), 6.94 (2H, ddd, J = 8.6,
2.0, 7.2 Hz), 4.42 (2H, s), 3.43 (1H, d, J = 9.1 Hz), 3.31
(1H, d, J = 9.1 Hz), 3.17 (1H, d, J = 13.2 Hz), 3.08 (1H, d,
J = 13.2 Hz), 2.62 (1H, s), 1.24 (3H, s). 13C NMR
(CDCl3): d 161.6 (d, 1JFC = 246.3 Hz), 137.7, 132.1 (d,
3JFC = 7.5 Hz), 131.9, 128.3, 127.7, 127.5, 115.9 (d,
2JFC = 21.6 Hz), 75.4, 73.3, 72.6, 44.5, 23.8.
Compound 13a: ½a�18

D �12.3 (c 1.12, EtOH). IR (film):
3506, 3105, 2866, 1591, 1495, 1317, 1236, 1146, 1084, 846,
750 cm�1. 1H NMR (CDCl3): d 7.92 (2H, ddd, J = 8.5,
5.0, 2.0 Hz), 7.31 (2H, ddd, J = 9.2, 8.5, 2.0 Hz), 7.27–7.17
(5H, m), 4.48 (2H, s), 3.47 (1H, s), 3.47 (1H, d, J = 14.3
Hz), 3.46 (2H, s), 3.33 (1H, d, J = 14.3 Hz), 3.36 (1H, s),
1.25 (3H, s). 13C NMR (CDCl3): d 165.6 (d, 1JFC =
256.2 Hz), 137.5, 137.1, 130.5 (d, 3JFC = 10.0 Hz), 128.3,
127.8, 127.6, 116.5 (d, 2JFC = 23.2 Hz), 76.2, 73.4, 71.7,
62.6, 24.8.
Compound 13b: Mp 85.0–85.5 �C. ½a�18

D �5.2 (c 1.05,
EtOH). IR (KBr): 3467, 3074, 2945, 1591, 1495, 1454,
1315, 1203, 1144, 837 cm�1. 1H NMR (CDCl3): d 7.97
(2H, ddd, J = 6.8, 5.1, 1.7 Hz), 7.25 (2H, ddd, J = 8.4, 6.8,
1.7 Hz), 3.66 (1H, s), 3.62 (3H, m), 3.35 (1H, d,
J = 14.2 Hz), 3.24 (1H, d, J = 14.2 Hz), 2.45 (1H, dd,
J = 6.1 Hz, 5.9 Hz), 1.42 (3H, s). 13C NMR (CDCl3): d
165.8 (d, 1JFC = 256.2 Hz), 136.5 (d, 4JFC = 3.3 Hz), 130.5
(d, 3JFC = 9.1 Hz), 116.7 (d, 2JFC = 22.4 Hz), 72.8, 69.4,
62.5, 24.6. HRMS (EI, 70 eV): calcd for C10H14FO4S:
(M+H+): 249.0595; found: m/z 249.0587.
Compound 14: Prisms from hexane–EtOAc, mp 132.0–
132.2 �C, ½a�21

D �8.7 (c 1.04, EtOH). IR (KBr): 3475, 3105,
2997, 1728, 1589, 1491, 1458, 1325, 1284, 1147, 822 cm�1.
1H NMR (CD3OD): d 7.97 (2H, ddd, J = 8.7, 5.1, 2.1 Hz),
7.29 (2H, ddd, J = 9.0, 8.7, 2.1 Hz), 3.84 (1H, d,
J = 14.8 Hz), 3.65 (1H, d, J = 14.8 Hz), 1.44 (3H, s). 13C
NMR (CD3OD): d 176.8, 167.0 (d, 1JFC = 253.8 Hz),
138.7, 132.5 (d, 3JFC = 10.0 Hz), 117.0 (d, 2JFC =
23.2 Hz), 73.3, 65.0, 27.6.
Compound (R)-1: Mp 180–181 �C [lit.28 181–182 �C]. ½a�22

D
�83.2 (c 1.04, MeOH) [lit.10 ½a�18

D �82 (c 1.0, MeOH)],
HPLC: 100% ee [Chiralcel OJ-H, 0.46 cm · 25 cm; hexane–
i-PrOH (5:4), 0.5 mL/min], tR(min) = 22.4 [(R)-, 100%].
No peak ascribable to (S)-isomer [tR(min) = 27.3] was
detected. IR (KBr): 3462, 3340, 3109, 2916, 2231, 1703,
1612, 1581, 1522, 1495, 1431, 1333, 1292, 1142, 845 cm�1.
1H NMR (CDCl3): d 9.07 (1H, s), 7.97 (1H, s), 7.91–7.86
(2H, m), 7.78 (1H, m), 7.13–7.19 (2H, m), 5.03 (1H, s),
3.96 (1H, d, J = 14.5 Hz), 3.48 (1H, d, J = 14.5 Hz), 1.58
(3H, s). 13C NMR (CDCl3): d 173.6, 164.7 (d, 1JFC =
252.1 Hz), 143.0, 137.0, 136.1, 131.3 (d, 3JFC = 13.3 Hz),
131.3 (q, 2JFC = 31.5 Hz), 122.8, 122.4 (q, 1JFC =
273.7 Hz), 117.4 (q, 3JFC = 5.0 Hz), 116.0 (d, 2JFC =
22.4 Hz), 115.7, 101.9, 73.1, 63.4, 27.2. Its IR and NMR
spectra were identical with those reported previously.10

30. Tanner, D.; Somfai, P. Tetrahedron 1986, 42, 5985–
5990.
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